If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+96x-124=0
a = -16; b = 96; c = -124;
Δ = b2-4ac
Δ = 962-4·(-16)·(-124)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{5}}{2*-16}=\frac{-96-16\sqrt{5}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{5}}{2*-16}=\frac{-96+16\sqrt{5}}{-32} $
| 2(x+6)=11x+7/3 | | |10v+3|=73 | | 2x+1+×+4=+×16+× | | n2-6n+5=0 | | 0.3x=32 | | 4.2=6/z | | 4(x-3)-4=8(0.5x+1) | | 0.1x=32 | | x(2/3x)=1440 | | 4.2=z/0 | | (3x+3)+(4x-4)=360 | | z/0=4.2 | | x-1.1=1.4 | | (5x-7)+19=360 | | 7×-12=2x+8 | | -2(x-1)+3(-2-x)=-9x | | y=(8y^2-5y+7)-(2y^2+7y+11) | | (x+1)+7=360 | | (x-14)+(9x-4)=180 | | (x+14)+(9x-4)=18/ | | 0.50/2=1.50/x | | 0.5/2=1.50/x | | -27x+28x=41 | | 6m+8=5 | | 10x+50=15x+20 | | 0.2x-3=0.4 | | 14b+3b=135 | | p(.29)+2.59(8-p)=9.22 | | (4x-6)°=(8x-6)° | | 3(2x-15)=36 | | 3/5c=14 | | 15^2+b^2=32^2 |